300 台灣 新竹市 新竹科學園區力行路6號 昇陽國際半導體股份有限公司 JOYCE CHEN

JOYCE CHEN PHOENIX SILICON INTERNATIONAL CORP NO.6 LI-HSIN RD SCIENCE PARK HSINCHU 300 TAIWAN

Date: 2017/04/06 Subscriber: 234044001 PartySite: 602517 File No: MH45837 Project No: 4787871730 PD No: 17015423 Type: R PO Number:

Subject: Procedure And/Or Report Material

The following material resulting from the investigation under the above numbers is enclosed.

Issue					
Date	Vol	L	Sec	Pages	Revised Date
2007/05/2	29	1	1	Revised Description Page(s) 5,6,7	2017/03/30
2007/05/2	29	1	1	New Test Record 5	2017/03/30
		2		Index Page(s)	
		2		Appendix	
2009/09/2	28	2	1	Revised Description Page(s) 1,3	2017/03/30

Please file revised pages and illustrations in place of material of like identity. New material should be filed in its proper numerical order.

NOTE: Follow-Up Service Procedure revisions DO NOT include Cover Pages, Test Records and Conclusion Pages. Report revisions DO NOT include Authorization Pages, Indices, Section General Pages and Appendixes.

Please review this material and report any inaccuracies to UL's Customer Service Professionals. Contact information for all of UL's global offices can be found at http://ul.com/aboutul/locations. If you'd like to receive updated materials FASTER, UL offers electronic access and/or delivery of this material. For more details, contact UL's Customer Service Professionals as shown above.

This material is provided on behalf of UL LLC(UL) or any authorized licensee of UL.

TPI File

File MH45837	Vol. 1	Sec. 1	Page 5	Issued:	2007-05-29
		and Report		Revised:	2017-03-30

MARKINGS/INSTRUCTIONS:

*

Recognized Company, Model designation, and date of manufacturer on the cell.

The cell or smallest package containing the cell shall be marked with the UL Recognition Mark.

The date of manufacturer may be in code provided that the code does not repeat in less than 20 years and does not require reference to the production records of the manufacturer to determine the date the product was manufactured.

The date code consists of the following:

 $\frac{D}{2}$ $\frac{5}{3}$ $\frac{10}{4}$ --- $\frac{0183}{5}$ Example: 4KFT 1 1: Product number 2:Year 3: Month 4: Production serial number 5:Cell serial number Year code: 2009: O 2010: Q 2014: Y 2015: B 2008: M 2009: O 2007: K 2011: S 2012: U 2013: W 2016: D 2019: Н 2020: J 2018: F 2021: L 2022: N 2023: P 2024: R 2025: Т 2026: V 2027: X 2030: C 2028: Z 2029: A . . . *

The following statements, or equivalent, shall be included on the smallest package containing cells:

"WARNING: Risk of Fire, Explosion, and Burns. Do Not Disassemble, Crush, Heat Above manufacturer's recommended charge/discharge temperature/100°C (212°F), or Incinerate." (++)

(++) - This warning statement may contain additional precautions such as a warning about short-circuiting the cells.

File MH45837	Vol. 1	Sec. 1	Page 6	Issued:	2007-05-29
		and Report		Revised:	2017-03-30

Lithium-ion Cylindrical Cells

General - See Ills. 1, 2 for additional details of construction.

1. Cell Case - Consists of material, overall dimensions, and thickness of plating as noted below.

Model	Case Material	Case Dimensions, mm		Case Thickness, mm	Plating Thickness, mm
		Length	OD		
PC26065F1, 2BF1	Al (Al3003)	65.0	26.0	0.3	1
PC26070F1, 2AF1	Al (Al3003)	70.0	26.0	0.3	1
PC40138F1, 4BF1	Al (Al3003)	138.0	40.6	0.5	2
PC40155F1, 4AF1	Al (Al3003)	155.0	40.6	0.5	2
PC40138-LFP	Al (Al3003)	138.0	40.6	0.5	1
PC40138-LFP-K	Al (Al3003)	138.0	40.6	0.5	1

 Electrode Assemblies - Consists of positive and negative electrodes rolled in a "jelly roll" assembly within the case and constructed as noted below.

Model No.	Positive Electrode		Negat	tive Electrode	Negative Electrode/ Positive Electrode
	Drawing Dimensions, Drawing		Dimensions,	(Ah _{NE} /Ah _{PE})	
	No.	mm	No.	mm	
PC26065F1, 2BF1		55 x 1390		58 x 1470	1.115
PC26070F1, 2AF1		58 x 1390		61 x 1470	1.112
PC40138F1, 4BF1		116 x 3665		122 x 3745	1.097
PC40155F1, 4AF1		125 x 3665		133 x 3745	1.087
PC40138-LFP		119 x 3450 ± 1%		123 x 3550 ± 1%	1.1 ± 0.1
PC40138-LFP-K		124×3800±2%		126×3880±2%	1.06±0.1

File MH45837	Vol. 1	Sec. 1	Page 7	Issued:	2007-05-29
		and Report		Revised:	2017-03-30

3. Separator - Battery separator Located between the electrodes and constructed as noted below. The separator is sized to extend beyond the electrodes as noted below for reliable insulation.

Cell Model	Separator Mfg.	eparator Type Mfg. Designation		Report Reference (UnListed Component)		ions,	Minimum Extension beyond electrodes, mm
			File Number	Report Date	Length	Width	
PC26065F1, 2BF1	Celgard	2325 (thickness 25± 2.5um)	MH45837	2009- 09-28	1550	61	Each side 1.5
PC26070F1, 2AF1	Celgard	2325 (thickness 25± 2.5um)	MH45837	2009- 09-28	1550	64	Each side 1.5
PC40138F1, 4BF1	Celgard	2325 (thickness 25± 2.5um)	MH45837	2009- 09-28	3900	125	Each side 4.5
PC40155F1, 4AF1	Celgard	2325 (thickness 25± 2.5um)	MH45837	2009- 09-28	3900	142	Each side 4.5
PC40138- LFP	Celgard	2325 (thickness 25± 2.5um)	MH45837	2009- 09-28	4000 ± 1	127.5	Each side 4.5
PC40138- LFP-K	Celgard	M825(thickness 16±2.0µm)	MH45837	2009- 09-28	4180±2%	128.5	Each side 4.5
PC40138- LFP-K	Celgard	H1612 (thickness 16±1.6µm)	MH45837	2009- 09-28	4030±2%	130	Each side 4.5

TEST RECORD NO. 5

SAMPLES:

The manufacturer furnished representative samples of the cell Model noted below for the investigation. These samples were subjected to the test program described on the following pages.

				End	Nominal		Maximum	Maximum
			Energy	Point	Voltage		Charging	Charging
	Cell		Density,	Voltage,	Rating,	Capacity,	Current,	Voltage,
Model	Chemistry	Cell Shape	mAh/mm^3	V dc	V dc	Ah	mA	V dc
PC40138-		aulindrias	0 10075	2 1	2.2	10+0	10000	2 65
LFP-K	LiFePO4	cyrrnurrea.	0.10075	2.1	5.5	IOIZ	10000	5.05

GENERAL:

Test results relate only to the items tested.

The tests were conducted at UL.

Only limited tests were performed on Model PC40138-LFP-K employing the alternate separator source, type H1612 by Celgard, correction of Electrod Assemblies information, and revise date code consists, due to testing previously performed on the subject unit.

Tests were considered covered as follows:

	File		Test Record
Test	Reference	Report Date	No.
Short Circuit Test at room	MH48419	2011-12-14	1
Shock Test	MH48419	2011-12-14	1
Vibration Test	MH48419	2011-12-14	1
Temperature Cycling Test	MH48419	2011-12-14	1
Low Pressure Test (Altitude Simulation	MH48419	2011-12-14	1
Test)			
Short Circuit Test at 55°C	MH48837	2007-05-29	4
Abnormal Charging Test	MH48837	2007-05-29	4
Projectile Test	MH48837	2007-05-29	4

The following tests were conducted.

Model	Test	UL 1642, Section	Complied, Y, N Or N/A	Comments
PC40138-LFP-K	Crush Test	13	Y	Compliance
PC40138-LFP-K	Impact Test	14	Y	Compliance
PC40138-LFP-K	Heating Test	17	Y	Compliance

The test methods and results of the above tests have been reviewed and found in accordance with the requirements in the Standard for Lithium Batteries, UL 1642, Fifth Edition, Dated March 13, 2012, and contains revisions through Dated July 30, 2013.

Test Record Summary:

The results of this investigation, including construction review and testing, indicate that the products evaluated comply with the applicable requirements in the UL Standard for Safety for Lithium Batteries, UL 1642, Fifth Edition, Dated March 13, 2012, and contains revisions through Dated July 30, 2013, therefore, such products are judged eligible to bear UL's Mark as described on the Conclusion Page of this Report. Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL.

Test Record by: JOY SHEN Associate Project Engineer

Reviewed by: JOHN WANG Associate Project Engineer

File MH45837	Vol. 2	Index	Page 1	Issued:	2009-09-28
				Revised:	2017-03-30

INDEX

MODEL	SECTION
Battery Separator, Models Celgard 2325, Celgard M825, Celgard H1612	1

File MH45837	Vol. 2	Sp.	App.	В	Page 1	Issued:	2012-03-19
	(File behind Appendix D)					Revised:	2017-03-30

Sample Group	#/Group	Model #	Report Date	Category	Type of Cells	Cell capacity (C) mAh	Thickness(µm)	Additional Info	Test Program Code
1	3	Celgard 2325	2009-09-28	Separator	-	-	25 +/- 2.5	<pre># - To be determined after first FUS test</pre>	E, F
		Celgard H1612	2009-09-28	Separator	-	-	16 +/- 1.6	<pre># - To be determined after first FUS test</pre>	Е, F
		Celgard M825	2014-08-26	Separator	-	-	16 +/- 2	<pre># - To be determined after first FUS test</pre>	E, F

TABLE B	- SAMPLE	SELECTION	GUIDE
---------	----------	-----------	-------

File MH45837Vol. 2Sp. App. BPage 2Issued: 2012-03-19(File behind Appendix D)Revised: 2017-03-30

COMPONENT - LITHIUM BATTERIES (BBCV2, BBCV3)

INDEX TO FOOTNOTES:

- * This model has +/- 1000 mAh tolerance
- + This model has +/- 10% mAh tolerance

File MH45837 Vol. 2 Sp. App. C (File behind Appendix D)

COMPONENT - LITHIUM BATTERIES (BBCV2, BBCV3)

TABLE C - TEST CRITERIA

Refer to Sp. App. B for Footnotes and TABLE B for Additional Information

Model #	Cell capacity (C) mAh	Open Circuit Voltage, Vdc	Top-off Charge voltage(V _c), Vdc	Top-off Charge current (I _c), mA	End Point/ Cut Off Voltage, Vdc	External Protector Left in Circuit, Y/N?	IR Reference	TGA Reference	DSC Reference
Celgard 2325	-	-	-	-	-	-	#	#	#
Celgard H1612	-	-	-	-	-	-	#	#	#
Celgard M825	-	-	-	-	-	-	#	#	#

TABLE D - CELL MODELS SUBJECT TO PERIODIC PRODUCTION TESTING (WITH SIMPLIFIED CONSTRUCTION DESCRIPTIVE DETAILS) (FOR SECONDARY CELLS)

Cell Model	Section No./Report Date*			
N/A	N/A			
* - Note to CAS: Cells from the same family different ratings) must all be subjected to Testing, but not both, within a procedure s families may choose either option within ea mixed within a single section/report date	(i.e. same chemistry and construction except or all not subjected to Periodic Production section/report date. Cells from different sch volume, but the two options shall not be			

TABLE F - TEST EQUIPMENT

The following equipment has been evaluated with respect to the requirements expressed in Appendix D and has been found suitable:

Test	Type of Equipment	Equipment	Equipment Model No.
		Manufacturer's Name	
Weight	N/A		
Upper Discharge	N/A		
Lower Discharge	N/A		
Leakage	N/A		
X-Ray	N/A		
Construction			
Review			

TABLE 1 PRODUCTION WEIGHT TEST PARAMETERS

Cell Models	Section No.	No. of Production Samples Tested per Day (≥ 3 samples)	Manufacturer's Specified Weight ± tolerances, g
N/A			

TABLE 2 PRODUCTION UPPER and LOWER DISCHARGE TEST PARAMETERS

Cell Models	Section No.	No. of Production Samples Tested per Month (≥ 3 Samples for each discharge)	Upper Di	scharge Test	Lower Discharge Test		
			Discharge	Mfg. Specified	Discharge	Mfg. Specified	
			Rate, mA	Tolerances for	Rate, mA	Tolerances for	
				V/C Discharge		V/C Discharge	
				PIOIIIE		PIOIIIe	
N/A							

TABLE 3 PRODUCTION LEAKAGE TEST PARAMETERS

Cell Models	Section No.	No. of Production Samples Tested per Month,
		(≥ 5 Samples)
N/A		

TABLE 4 PRODUCTION X-RAY CONSTRUCTION REVIEW PARAMETERS

Cell Models	Section No.	No. of Production Samples Tested per Month,
		(≥ 10 Samples)
N/A		

File MH45837	Vol. 2	Sec. 1	Page 1	Issued:	2009-09-28
		and Report		Revised:	2017-03-30

DESCRIPTION

PRODUCT COVERED:

Component - Battery separators:

Part Nos.
Celgard 2325
Celgard M825
Celgard H1612

PARAMETERS SPECIFICATIONS:

See Table IA and IB for parameters specifications

GENERAL MATERIAL COMPOSITION:

Part No.	Generic material(s) specification
Celgard 2325	PP/PE/PP
Celgard M825	PP/PE/PP
Celgard H1612	PP/PE/PP

TECHNICAL CONSIDERATIONS (NOT FOR FIELD REPRESENTATIVE'S USE):

The products are lithium ion battery separators which are essentially a porous membrane of insulating material(s) intended to provide electrical insulation between the electrodes of a lithium ion battery while also allowing for ion transport between the electrodes. The separators have various parameter specifications related to the material and structural properties of the material and that are determined through testing.

Use - For use only in products where the acceptability of the combination is determined by Underwriters Laboratories Inc.

Conditions of Acceptability - The following are among the considerations to be made in judging the use of this material in an end-use product.

File MH45837	Vol. 2	Sec. 1	Page 3	Issued:	2009-09-28
		and Report		Revised:	2017-03-30

TABI	ĿΕ	IA
SEPARATOR	PA	RAMETERS

Part No.	Permeability	Thickness,	Tensile Strength	
	(secs/25/ml)	μm	kg-f,	/cm ²
			Machine (MD)	Transverse
				(TD)
Celgard 2325	643s/100ml	25 ± 2.5	1700kg/cm2	150kg/cm2
Celgard M825	585S/100ml	16 ± 2.0	2000Kg/cm2	140Kg/cm2
Celgard H1612	290S/100ml	16 ± 1.6	1350Kg/cm2	100Kg/cm2

TABLE IB SEPARATOR PARAMETERS

Part No.	Puncture Strength	Dimensional	Shutdown	Melt Temp, °C	
	(g-f/mm)	Stability*	Temp, °C	- ·	
		(g-f/mm)	-		
Celgard 2325	380		132	164	
Celgard M825	300		132	164	
Celgard H1612	300		132	165	
* - During the dimensional stability test, the puncture strength test is					
repeated on samples subjected to conditioning for 1 hour at 130 \pm 2°C.					